Graphs, Geometry, 3-transpositions, and Symplectic F2-transvection Groups

نویسنده

  • J. I. HALL
چکیده

In this paper we begin the classification completed in [12] of all partial linear spaces n , graphs F, and groups G which satisfy one of the following: I. II = (0>, ££) is a connected partial linear space of order 2 in which every pair of intersecting lines lies in a subspace isomorphic to the dual of an affine plane of order 2; II. F is a connected graph such that, for each vertex x of F, the set of vertices of T adjacent to x forms a subgraph isomorphic to a grid graph L(3, Ax), where A* is a set depending on x;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the geometry of k-transvection groups

More than 20 years ago, B. Fischer [5,6] started his pioneering work on groups generated by a conjugacy class of 3-transpositions, i.e., a conjugacy class of involutions D, such that for all d, e ∈ D, we have that [d, e] = 1 or 〈d, e〉 ' SL2(2). Fischer classified all finite groups G generated by a class of 3-transpositions under the additional assumptions that G′′ = G′ and O2(G) = O3(G) = Z(G) ...

متن کامل

Switched symplectic graphs and their 2-ranks

We apply Godsil–McKay switching to the symplectic graphs over F2 with at least 63 vertices and prove that the 2-rank of (the adjacency matrix of) the graph increases after switching. This shows that the switched graph is a new strongly regular graphwith parameters (22ν−1, 22ν−1, 22ν−2, 22ν−2) and 2-rank 2ν+2 when ν ≥ 3. For the symplectic graph on 63 vertices we investigate repeated switching b...

متن کامل

Flat graphs based on affine spaces and affine symplectic spaces

Let AG(n,Fq) be the n-dimensional affine space over the finite field Fq. For 0 ≤ m ≤ n − 1, define a graph G whose vertex set is the set of all m-flats of AG(n,Fq), such that two vertices F1 and F2 are adjacent if dim(F1∨F2) = m+1, where F1∨F2 is the minimum flat containing both F1 and F2. Let ASG(2ν,Fq) be the 2ν-dimensional affine-symplectic space over Fq. Define a graph S (ν) whose vertex se...

متن کامل

International Conference on Incidence Geometry

1. Kristina Altmann, Hyperbolic lines in unitary space. 2. John Bamberg, Transitive m-systems. 3. Barbara Baumeister, The primitive permutation groups with a regular subgroup. 4. Rieuwert Blok, Extensions of isomorphisms for affine grassmannians over F2. 5. Matthew Brown, Tetradic sets of elliptic quadrics of PG(3, q) and generalized quadrangles of order (s, s2) with Property (G). 6. Julia Brow...

متن کامل

2 S ep 2 00 3 Compactness results in Symplectic Field Theory

This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [EGH]. We prove compactness results for moduli spaces of holomorphic curves arising in Symplectic Field Theory. The theorems generalize Gromov's compactness theorem in [Gr] as well as compactness theorems in Floer homology theory, [F1, F2], and in contact geometry, [H, HWZ8].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989